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Abstract

The synchronous firing of neurons in a pulse coupled
neural network composed of excitatory and inhibitory
neurons is analyzed. The neurons are connected by both
chemical synapses and electrical synapses among the in-
hibitory neurons. By introducing electrical synapses, pe-
riodically synchronized firing as well as chaotically syn-
chronized firing is widely observed. Moreover, we find
stochastic synchrony where the ensemble-averaged dy-
namics shows synchronization in the network but each
neuron has a low firing rate and the firing of the neurons
seems to be stochastic. Stochastic synchrony of chaos
corresponding to a chaotic attractor is also found.

1 Introduction

Since the 1980s, oscillations and synchronization of the
ensemble-averaged dynamics in neuronal assemblies have
been found in many areas of the brain, and their roles
in information processing have been discussed (For a re-
view, see e.g. Gray (1994)). For example, when visual
stimulation was given to cats, oscillations of 40 Hz ap-
peared in the local field potential in the visual cortex.
Moreover, when correlated inputs were given to the re-
ceptive fields of each assembly, synchronization among
distant (∼ 7mm) assemblies appeared (Gray & Singer,
1989). It has been proposed that such synchronization
among neuronal assemblies might solve the binding prob-
lem (Gray, 1999). On the other hand, various oscillations
are known to exist in the hippocampus, such as the sharp
wave of 200 Hz (Buzsáki et al., 1992), the theta rhythm
of 8 Hz (Csicsvari, Hirase, Czurko, & Buzsáki, 1998), and
the gamma rhythm of 40 Hz (Bragin et al., 1995), and

the correlated firing caused by such oscillations might
be related to regulation of learning in the hippocampus
(Buzsáki, 2006). However, the above discussions are just
based on hypotheses, and possible roles and mechanisms
of the oscillations and synchronization are still contro-
versial.

Moreover, weak synchronization, where the ensemble-
averaged dynamics in neuronal assemblies shows oscilla-
tions but each neuron has a low firing rate, is also known
to exist in the visual cortex (Gray & Singer, 1989), in
the hippocampus (Buzsáki et al., 1992; Csicsvari, Hi-
rase, Czurko, & Buzsáki, 1998; Fisahn, Pike, Buhl, &
Paulsen, 1998; Whittington et al., 2000), and in the cere-
bellar nucleoolivary pathway (Lang, Sugihara, & Llinás,
1996). Brunel & Hansel (2006) and Tiesinga & José
(2000) called such weak synchronization as stochastic
synchrony. Stochastic synchrony was found both in
modeling studies based on experimental data (Traub,
Miles, & Wong, 1989) and in theoretical modeling stud-
ies (Brunel, 2000; Brunel & Hakim, 1999; Brunel &
Hansel, 2006; Kanamaru, 2006a; Kanamaru & Sekine,
2004), and its relationship to information processing has
attracted attention. One of the mechanisms of stochastic
synchrony might be oscillations with small amplitudes of
the ensemble-averaged dynamics in the network. Let us
consider the situation where the dynamics averaged in
an assembly of neurons shows an oscillation, and this os-
cillation becomes a feedback input to this network. If the
amplitude of this feedback input is sub-threshold for each
neuron, the firing of each neuron becomes stochastic, and
stochastic synchrony takes place (Kanamaru & Sekine,
2004). This mechanism is similar to that of stochastic
resonance (Gammaitoni, Hänggi, Jung, & Marchesoni,
1998; Longtin, 1993).
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To our knowledge, in modeling studies, stochastic syn-
chrony has been realized only by periodic oscillations.
On the other hand, in the present study, we found
stochastic synchrony that was generated by chaotic os-
cillations. This paper is organized as follows. In section
2, a pulse coupled neural network is defined. This net-
work is composed of excitatory neurons and inhibitory
neurons, and their parameters such as synaptic time con-
stants are set as asymmetric between excitatory and in-
hibitory populations in order to reflect biological con-
ditions. Besides chemical synapses, we also introduce
electrical synapses among the inhibitory neurons. To ex-
amine the dynamics of this network, the Fokker-Planck
equation obtained in the limit of an infinite number
of neurons is numerically analyzed, and the bifurcation
of the system is investigated. By introducing electri-
cal synapses, chaotic oscillations with small amplitudes
are observed. In section 3, it is found that the oscil-
lations with small amplitudes correspond to stochastic
synchrony, namely, weak synchronization. If such oscilla-
tions are chaotic, stochastic synchrony of chaos appears.
In section 4, the roles of types of connections between
assemblies are examined. The final section provides dis-
cussions and conclusions.

2 A Network Composed of Exci-

tatory Neurons and Inhibitory
Neurons

In the following sections, we consider a pulse coupled
neural network composed of excitatory neurons with in-
ternal states θ(i)E (i = 1, 2, · · · , NE) and inhibitory neu-
rons with internal states θ(i)I (i = 1, 2, · · · , NI) (Kana-
maru, 2006b) that are represented as follows:

τE
˙
θ
(i)
E = (1− cos θ(i)E ) + (1 + cos θ(i)E )

×(rE + ξ(i)E (t) + gEEIE(t)− gEIII(t)), (2.1)

τI
˙
θ
(i)
I = (1− cos θ(i)I ) + (1 + cos θ(i)I )

×(rI + ξ(i)I (t) + gIEIE(t)− gIIII(t) + ggapI
(i)
gap(t)),

(2.2)

IX(t) =
1

2NX

NX∑
j=1

∑
k

1
κX

exp

(
− t− t

(j)
k

κX

)
, (2.3)

I(i)gap(t) =
1
NI

NI∑
j=1

sin
(
θ
(j)
I (t)− θ(i)I (t)

)
, (2.4)

〈ξ(i)X (t)ξ(j)Y (t′)〉 = DδXY δijδ(t− t′), (2.5)

where X and Y each denote the excitatory assembly E
or the inhibitory assembly I, t(j)k is the kth firing time
of the jth neuron in assembly X , and the firing time is
defined as the time at which θ(j)X exceeds π in the pos-
itive direction. In addition to the connections IX(t) by
chemical synapses in which the post-synaptic potential

is written by an exponential function, there are connec-
tions I(i)gap(t) with connection strength ggap by electri-
cal synapses among the inhibitory neurons. Previous
experimental studies showed that there are rich electri-
cal synapses among inhibitory neurons in many areas
of the brain such as the cortex (Galarreta & Hestrin,
1999, 2001; Gibson, Beierlein, & Connors, 1999) and
the hippocampus (Fukuda & Kosaka, 2000; Katsumaru,
Kosaka, Heizmann, & Hama, 1988; Strata et al., 1997;
Zhang et al., 1998). The electrical synapses are real-
ized by structures called gap junctions (Nicholls, Mar-
tin, Wallace, & Fuchs, 2001), and such connections cor-
respond to the diffusive couplings in physical systems. It
is known that they facilitate synchronous firing among
neurons (Ermentrout, 2006).
Note that the model of neurons with θ̇ = (1− cos θ)+

(1 + cos θ)r is called the theta neuron model (Ermen-
trout & Kopell, 1986; Ermentrout, 1996), and this is
the canonical model of class 1 neurons. Without the
electrical synapses, our network is based on the canon-
ical model of class 1 networks connected by chemical
synapses with exponential functions (Izhikevich, 1999,
2000). For simplicity, the restrictions, gEE = gII ≡ gint

and gEI = gIE ≡ gext, are placed, where gint is the in-
ternal connection strength in an assembly and gext is the
external connection strength between excitatory and in-
hibitory assemblies. Note that the introduction of the
electrical synapses to the theta model is not straightfor-
ward because the transformation of the variable of the
membrane potential to phase θ is singular when the neu-
ron fires (Ermentrout, 2006). We use the conventional
definition of the diffusive coupling for simplicity. The re-
sult similar to that obtained in this paper was also found
(data not shown) using the class 1 Morris-Lecar neurons
(Ermentrout, 1996; Morris & Lecar, 1981); therefore, our
results might be found widely in the networks of class 1
neurons.
The membrane time constants are set as τE = 1 and

τI = 0.5 in order to take into account the physiologi-
cal fact that fast spiking cells are dominant among the
inhibitory neurons in the cortex. The synaptic time con-
stants are set as κE = 1 and κI = 5.
In the absence of inputs IX(t) from assembly X and

noise ξ(i)X (t), a single neuron shows a self-oscillation when
rX > 0. When rX < 0, this neuron becomes an excitable
system with a stable equilibrium point defined by

θ0 = − arccos
1 + rX
1− rX , (2.6)

in which θ0 is close to zero for rX ∼ 0. In the following,
we use values of the parameter rX < 0 and consider the
dynamics of a network of excitable neurons.
As shown in Appendix A, the ensemble-averaged dy-

namics in this network can be analyzed using the Fokker-
Planck equation (Gerstner & Kistler, 2002; Kuramoto,
1984), which is obtained in the limit of NE , NI → ∞.
When there are no correlations of firing among neurons
in the network, the stable solution of the Fokker-Planck
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Figure 1: Bifurcation sets in the (D, gext) plane for (A)
ggap = 0 and (B) ggap = 0.15. The excitatory and in-
hibitory neurons are connected by chemical synapses.
Synchronous firing of neurons is generally observed when
the values of D and gext are in the area enclosed by
the Hopf and HB (or SNL) bifurcation lines. In (B),
by introducing the electrical synapses among the in-
hibitory neurons, synchronous firing exists even when
gext > gint = 5. The solid, dotted, and dash-dotted lines
denote the Hopf, saddle-node, and homoclinic bifurca-
tions, respectively. The areas where a chaotic solution
exists are roughly sketched. SN, the saddle-node bifur-
cation; SNL, the saddle-node on limit cycle bifurcation;
HB, the homoclinic bifurcation.

equation is the equilibrium state. When there are some
correlations of firing among neurons, the solution is time-
varying, namely, the ensemble-averaged dynamics in the
network can be represented by a limit cycle, a chaotic
attractor, and so on. In the following, when the solu-
tion of the Fokker-Planck equation is time-varying, we
consider the firing of the neurons as synchronous.

Bifurcation sets of the network obtained by numeri-

cal analyses of the Fokker-Planck equation (Kanamaru,
2006a, 2006b) based on the method given in Appendix
B, are shown in Figure 1. The noise intensity D and the
external connection strength gext are chosen as the bi-
furcation parameters. The bifurcation set for a network
without electrical synapses is shown in Figure 1A. Gen-
erally, synchronous firing of neurons is observed when
the values of D and gext are in the area enclosed by
the Hopf and HB (or SNL) bifurcation lines. A simi-
lar analysis was presented in Kanamaru (2006b), where
the membrane time constants and the synaptic time con-
stants were set as uniform. On the other hand, in the
present study, the time constants of the excitatory and
inhibitory assemblies are set to be asymmetric, namely,
τE = 1, τI = 0.5, κE = 1, and κI = 5. With this
setting, it was found that the range of the parameter
values where synchronous firing exists became narrower
than that in the previous analysis. However, the struc-
ture of the bifurcations was almost the same with that
of the previous analysis; therefore, it can be concluded
that the structure of the bifurcations is robust against
changes in the membrane time constants and synaptic
time constants. It is also observed that chaos exists near
the homoclinic bifurcation set, but the area is very nar-
row because chaos disappears by the crisis.
It should be also noted that synchronous firing can

be observed only when gext < gint = 5, and this fact is
in agreement with a previous study (Kanamaru, 2006b).
Let us consider the dynamics in a network with large
gext by examining the instantaneous firing rates JE and
JI of the excitatory and inhibitory assemblies, respec-
tively, which can be calculated using the Fokker-Planck
equation as shown in Appendix A. Generally, JE and
JI decrease as gext increases; therefore, the equilibrium
point (JE , JI) approaches the origin. The dependence
of the equilibrium of JE on gext is shown in Figure 2A,
where JE decreases as gext increases.
By introducing electrical synapses among the in-

hibitory neurons, the area where synchronous firing can
be observed widened and synchronous firing was ob-
served even for gext > gint = 5, as shown in Figure
1B. Synchronous firing in a network with gext > gint was
also observed when the bifurcation parameters rE and rI
were set as asymmetric (Kanamaru, 2006a). This simi-
larity might have arisen because electrical synapses only
in the inhibitory assembly introduced asymmetry to the
network. Moreover, in Figure 1B, it is also observed that
the area where a chaotic solution exists widened by in-
troducing the electrical synapses. The dependence of JE

on gext in a network with ggap = 0.15 is shown in Fig-
ure 2B. Similarly to Figure 2A, JE tended to decrease
as gext increased. Moreover, both periodic solutions and
chaotic solutions existed in networks with gext of up to
4.5, and periodic solutions appeared again in networks
with gext > 8.35. It is also observed that in networks
with relatively large gext, the periodic oscillations and
the chaotic oscillations had small amplitudes near the
origin. Typical chaotic oscillations in the (JE , JI) plane
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Figure 2: Dependence of the instantaneous firing rate
JE of the excitatory assembly on gext. The solid and
dotted lines denote stable and unstable equilibria, re-
spectively. When a stable limit cycles or a chaotic at-
tractor exists in the network, their maxima and minima
are also plotted. The values of the parameters are set
as (A) D = 0.006 and ggap = 0 and (B) D = 0.006
and ggap = 0.15. The inset in (B) shows an enlargement
in the range 6 ≤ gext ≤ 10 where the vertical axis was
expanded.

with gext = 3.9 or gext = 4.4 are shown in Figures 3A
and 3B, respectively. Note that the chaotic attractor in
Figure 3B is smaller than that in Figure 3A. This is be-
cause the value of gext in Figure 3B is larger than that
in Figure 3A.
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Figure 3: Chaotic attractors in the (JE , JI) plane for
gint = 5 and ggap = 0.15. The values of the other pa-
rameters are set as (A) gext = 3.9 and D = 0.006 and
(B) gext = 4.4 and D = 0.0045. It is observed that the
attractor decreases in size as gext increases.

3 Stochastic Synchrony of Chaos

In the previous section, it was found that introduction of
electrical synapses in the inhibitory assembly had the fol-
lowing effects on the network. First, the ranges of the pa-
rameters where periodically or chaotically synchronized
firing can be observed widened. Second, the periodic or
chaotic solution of the network persisted even when gext

was relatively large, and such solution tended to have
small amplitudes near the origin.
Note that oscillations with small amplitudes close

to the origin correspond to weakly synchronized firing
(Kanamaru, 2006a; Kanamaru & Sekine, 2004), where
the ensemble-averaged dynamics shows synchronization
in the network but each neuron has a low firing rate
and the firing of each neuron seems to be stochastic. In
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Figure 4: The firing of neurons in a finite network with
NE = NI = 1000, gint = 5, gext = 3.9, ggap = 0.15,
and D = 0.006. Note that the values of the parame-
ters are the same with those used in Figure 3A. (A),
(C) Temporal change in the instantaneous firing rate of
the excitatory assembly and the inhibitory assembly, re-
spectively. (B), (D) Raster plot of the firing times of the
neurons in the excitatory assembly and in the inhibitory
assembly, respectively. Each excitatory neuron fires at
least once at each peak of JE ; therefore, stochastic syn-
chrony is not observed in the excitatory assembly. On
the other hand, some inhibitory neurons do not fire even
when JI takes peak values, and this phenomenon is a
sign of stochastic synchrony.

Brunel & Hansel (2006) and Tiesinga & José (2000), sim-
ilar phenomena were called stochastic synchrony. To our
knowledge, stochastic synchrony in previous studies was
based on periodic oscillations, and stochastic synchrony
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Figure 5: The firing of neurons in a finite network with
NE = NI = 1000, gint = 5, gext = 4.4, ggap = 0.15,
and D = 0.0045. Note that the values of the parame-
ters are the same with those used in Figure 3B. (A), (C)
Temporal change in the instantaneous firing rate of the
excitatory assembly and the inhibitory assembly, respec-
tively. (B), (D) Raster plot of the firing of the neurons in
the excitatory assembly and in the inhibitory assembly,
respectively. Stochastic synchrony of chaos is observed
in both assemblies.

that corresponds to chaotic oscillations, in other words,
stochastic synchrony of chaos, had not been observed.
Here we present the stochastic synchrony of chaos ob-
served in our network.
First, the synchronous firing that corresponds to the

chaotic attractor shown in Figure 3A, is shown in Fig-
ure 4. The trajectory shown in Figure 3A is a solu-
tion of the Fokker-Planck equation which holds in the
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limit of an infinite number of neurons, and the dynamics
shown in Figure 4 is the behavior of a finite network with
NE = NI = 1000. The stochastic differential equations
2.1 and 2.2 are integrated numerically in Stratonovich’s
sense based on the method in Klauder & Petersen (1985).
The instantaneous firing rate JX in assembly X is de-
fined as

JX(t) ≡ 1
NXd

NX∑
i=1

∑
j

Θ(t− t(i)j ), (3.1)

Θ(t) =
{

1 for 0 ≤ t < d
0 otherwise , (3.2)

where d = 1.0. As shown in Figure 4B, each excitatory
neuron fires at least once at each peak of JE . Thus,
stochastic synchrony is not observed in the excitatory
neurons in the network shown in Figure 4B. To quantify
this fact, we calculated the power-spectrum PE(f) of
JE(t), defined by

PX(f) =
1
N

N∑
j=1

1
T

∣∣∣∣∣
∫ tj+T

tj

JX(t)e−2πiftdt

∣∣∣∣∣
2

, (3.3)

where X = E or I, t1 = 0, tj+1 = tj + T , T = 2048,
and N = 21. Note that the mean value of N samples is
calculated to obtain smooth PX(f), and the frequency
f has an order of 1/t although both f and t are dimen-
sionless in our model. PE(f) is shown in Figure 6A,
and it is observed that it has a broad spectrum because
chaos and noise coexist in JE(t). Note that the peaks
at small frequencies f = 0.018 and f = 0.036 denote the
slow dynamics of JE(t), and the peaks at large frequen-
cies f = 0.075 and f = 0.1 denote the fast dynamics of
JE(t); therefore, the mean frequency of JE(t) would be
located in the range between the frequencies which de-
note the slow dynamics and the fast dynamics. Based on
the method shown in Appendix C, the mean frequency
fall of JE(t) is calculated as fall = 0.038. On the other
hand, the frequency f1 of the firing of excitatory neurons
is calculated as f1 = 0.041. Because f1 is close to fall,
it can be concluded that stochastic synchrony of chaos
does not take place in the dynamics of the excitatory as-
sembly shown in Figures 4A and 4B. On the other hand,
some inhibitory neurons do not fire even when JI takes
peak values as shown in Figure 4D. This phenomenon
is a sign of stochastic synchrony. The mean frequency
fall of JI(t) is calculated as fall = 0.046, and f1 of the
firing of inhibitory neurons is calculated as f1 = 0.034.
Because f1 is smaller than fall, it can be concluded that
stochastic synchrony of chaos takes place in the dynam-
ics of the inhibitory assembly shown in Figures 4C and
4D.
The synchronous firing that corresponds to the chaotic

attractor shown in Figure 3B, is shown in Figure 5. It
is observed that both the firing of the excitatory neu-
rons and that of the inhibitory ones are sparse and look
random, and that very few neurons fire even when JE
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respond to the firing patterns shown in Figure 4 and 5,
respectively. Note that the frequency f has an order
of 1/t although both f and t are dimensionless in our
model. The white arrows show the positions of the pe-
riodic structures. The positions of the mean frequency
fall of the assembly and the frequency f1 of the firing
of each neuron are indicated by thin vertical arrows.
The stochastic synchrony of chaos is observed in the in-
hibitory assembly in (A), and it is observed in both the
assemblies in (B).

and JI take peak values. These firing patterns repre-
sent stochastic synchrony that corresponds to a chaotic
attractor; therefore, we call these firing patterns as
stochastic synchrony of chaos. The power-spectra of
JE(t) and JI(t), the mean frequency fall of each assem-
bly, and the frequency f1 of the firing of each neuron
are shown in Figure 6B. In both the assemblies, it is ob-
served that f1 is smaller than fall; therefore, it can be
concluded that stochastic synchrony of chaos takes place
in both the assemblies.
Stochastic synchrony is realized when the oscillations

of the ensemble-averaged dynamics in the network have
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small amplitudes as shown in Figure 3B. In such a case,
the amplitude of the feedback input from the network
is also small, and it causes sub-threshold oscillations for
each neuron in the network and stochastic synchrony
(Kanamaru & Sekine, 2004). This mechanism is similar
to that of stochastic resonance (Gammaitoni, Hänggi,
Jung, & Marchesoni, 1998; Longtin, 1993), which is re-
alized when a small periodic signal and an appropriate
amount of noise are injected to an excitable element. In
our model, the signal and noise are defined by 2.3 and
2.5, respectively, and the periodic or chaotic signal is
generated by the internal dynamics of the network.

4 Roles of Types of Connections
among Neuronal Assemblies

In the previous sections, various kinds of synchronous
firing including chaotic synchrony were found in the net-
work of excitatory and inhibitory neurons by regulating
the external connection strength gext. In this section,
the roles of the connection strengths gEE , gIE , gEI , and
gII are examined.
In the previous sections, the restrictions gEE = gII =

gint and gIE = gEI = gext were placed in order to ana-
lyze the properties of the synchronous firing in the net-
work. In this section, we fix gint and gext at values at
which synchronous firing exists, and then we change the
value of only one of gEE , gIE , gEI , or gII while keep-
ing the other three values fixed. By analyzing the de-
pendence of the average 〈JE〉 of JE over time and the
variance Var(JE) of JE on each connection strength, the
roles of each connection could be understood. Particu-
larly, the variance Var(JE) takes the value close to zero
when the firing pattern of neurons is fully asynchronous,
and it takes non-zero values when the firing of each neu-
ron is synchronized. Thus, it can be used to measure the
degree of synchronization.
First, let us analyze the case where there is no elec-

trical synapse in the network (ggap = 0). The param-
eters are initially fixed at gEE = gII = gint = 5,
gIE = gEI = gext = 3, and D = 0.006, where peri-
odically synchronized firing is observed in the network.
The dependence of 〈JE〉 and Var(JE) on the connec-
tion strength was analyzed by changing the value of one
connection strength, and the results are shown in Fig-
ures 7A and 7B, respectively. Note that the vertical axis
in Figure 7B is log-scaled, and Var(JE) takes the value
close to zero when there is no plot. The following prop-
erties are observed in Figure 7. First, synchronous fir-
ing disappears (i.e., Var(JE)∼ 0) when one connection
strength is set to zero. In other words, all four types
of connections are required for a genesis of synchroniza-
tion. Second, strong synchronization is observed when
gIE and gEI are smaller than gEE and gII . Third, ad-
justment of the values of gIE and gEI is required to ob-
serve synchronous firing because Var(JE) takes non-zero
values only in some ranges of gIE and gEI as shown in
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network without electrical synapses. The initial values
of the parameters are set as gEE = gII = 5, gIE = gEI =
3, ggap = 0, and D = 0.006. The value of only one
connection strength, gEE , gII , gIE , or gEI , was varied.

Figure 7B. On the other hand, as for gEE and gII , syn-
chronous firing can be observed with sufficiently strong
gEE and gII . Fourth, in networks with large gEE, 〈JE〉
increases as gEE increases as shown in Figure 7A. On the
other hand, in networks with large gII , 〈JE〉 remained
at a nearly constant value. The above properties of syn-
chronous firing also held for different values of gint, gext,
and D.
Next, we analyze the roles of the connections when

there are electrical synapses in the network (ggap =
0.15). The parameters are initially fixed at gEE = gII =
gint = 5, gIE = gEI = gext = 4.4, and D = 0.0045,
where stochastic synchrony of chaos is observed in the
network. Note that these values of the parameters are
the same with those used in Figures 3B and 5. The
dependence of 〈JE〉 and Var(JE) on each connection
strength is shown in Figures 8A and 8B, respectively.
There are similarities and differences compared with the
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Figure 8: The dependence of (A) the average 〈JE〉 of JE

over time and (B) the variance Var(JE) of JE on each
connection strength gEE, gII , gIE, or gEI , in a network
with electrical synapses. The initial values of the pa-
rameters are set as gEE = gII = 5, gIE = gEI = 4.4,
ggap = 0.15, and D = 0.0045. Plateau-like structures
that indicate stochastic synchrony are observed in (B)
for systems with small gII , large gIE, or large gEI .

case of ggap = 0 in Figure 7. The plateau-like struc-
tures of Var(JE) observed for small gII , large gIE , or
large gEI show stochastic synchrony. This phenomenon
can be understood as follows. Stochastic synchrony can
be observed when gext is large as shown in Figure 1B.
Therefore, it is natural that stochastic synchrony exists
when gIE or gEI is large. Moreover, Figure 8 shows that
a decrease in gII has similar effects as an increase in gext

in the network.

5 Discussion and Conclusions

In the present study, we analyzed the synchronous fir-
ing in a pulse coupled neural network of excitatory
and inhibitory neurons that are connected by chemical
synapses. Electrical synapses among the inhibitory neu-

rons were introduced to this network. Bifurcation struc-
ture of the ensemble-averaged dynamics of neurons in the
network was analyzed with the Fokker-Planck equation
which is obtained in the limit of an infinite number of
neurons. It was concluded that by introducing the elec-
trical synapses to the network, the range of the parame-
ter values where periodically or chaotically synchronized
firing can be observed widened. Moreover, the periodic
or chaotic solution observed in the network with electri-
cal synapses persisted even for networks with large gext,
and it was found that the solutions for networks with
large gext had small amplitudes near the origin. The
oscillations with small amplitudes near the origin cor-
responded to stochastic synchrony where the ensemble-
averaged dynamics shows synchronization in the network
but each neuron has a low firing rate and the firing seems
to be stochastic. In the present study, we found stochas-
tic synchrony that corresponded to a chaotic attractor,
and we called this phenomenon stochastic synchrony of
chaos.
The roles of the four types of connections among ex-

citatory and inhibitory assemblies gEE , gIE , gEI , and
gII were also investigated. It was found that in a net-
work without electrical synapses, all four types of con-
nections were required for a genesis of synchronous firing.
This result seems to contradict the previous finding that
the pulse coupled self-oscillating neurons can perfectly or
partially synchronize with each other without inhibitory
neurons (Hansel, Mato, & Meunier, 1995; Kuramoto,
1991; Mirollo & Strogatz, 1990; Tsodyks, Mitkov, &
Sompolinsky, 1993; van Vreeswijk, 1996) or without ex-
citatory neurons (Golomb & Rinzel, 1993; Kopell, 2000;
van Vreeswijk, Abbott & Ermentrout, 1994). This dis-
crepancy is caused by the fact that our network is com-
posed of excitable, not self-oscillating neurons. In addi-
tion, it was found that adjustment of gEI and gIE was re-
quired. As to networks with electrical synapses, stochas-
tic synchrony was observed in networks with small gII ,
large gIE , or large gEI .
Although stochastic synchrony is often observed in

sparsely connected networks (Brunel, 2000; Brunel &
Hakim, 1999; Traub, Miles, & Wong, 1989), all neurons
in our network were connected with each other and the
connections were uniform. Thus, it can be concluded
that randomness of connections is not required for a gen-
esis of stochastic synchrony. Moreover, there are cases in
which stochastic synchrony is observed both in the exci-
tatory assembly and in the inhibitory assembly (Figures
5B and 5D). This was observed because the peak values
of both JE and JI were small. It is inferred that there
would be cases where stochastic synchrony is observed
either in the excitatory assembly or in the inhibitory as-
sembly according to the shape of the attractor.
When stochastic synchrony exists in a network, the

contribution of a single neuron in the network to the
synchronization is small. Therefore, this neuron might
also contribute to form other synchronous networks si-
multaneously. If such dynamics is realized, they can be
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interpreted as the stochastic realization of the dynamical
cell assemblies (Fujii et al., 1996; Hebb, 1949). Investi-
gation of such dynamics is an important future problem.
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A The Fokker-Planck Equation

for the System

To analyze the dynamics of the network, we use the
Fokker-Planck equations (Gerstner & Kistler, 2002; Ku-
ramoto, 1984) which are represented as

∂nE

∂t
= − ∂

∂θE
(AEnE)

+
D

2
∂

∂θE

{
BE

∂

∂θE
(BEnE)

}
, (A.1)

∂nI

∂t
= − ∂

∂θI
(AInI)

+
D

2
∂

∂θI

{
BI

∂

∂θI
(BInI)

}
, (A.2)

AE(θE , t) =
1
τE

(1− cos θE) +
1
τE

(1 + cos θE)

×(rE + gEEIE(t)− gEIII(t)), (A.3)

AI(θI , t) =
1
τI
(1− cos θI) +

1
τI
(1 + cos θI)

×(rI + gIEIE(t)− gIIII(t) + ggapIgap(θI , t)),
(A.4)

BE(θE , t) =
1
τE

(1 + cos θE), (A.5)

BI(θI , t) =
1
τI
(1 + cos θI), (A.6)

Igap(θI , t) = 〈sin θI〉 cos θI − 〈cos θI〉 sin θI , (A.7)

〈f(θI)〉 =
∫ 2π

0

f(θI)nI(θI , t) dθI , (A.8)

for the normalized number densities of excitatory and
inhibitory neurons, in which

nE(θE , t) ≡ 1
NE

∑
δ(θ(i)E − θE), (A.9)

nI(θI , t) ≡ 1
NI

∑
δ(θ(i)I − θI), (A.10)

in the limit of NE, NI → ∞. The probability flux for
each assembly is defined as

JE(θE , t) = AEnE − D

2
BE

∂

∂θE
(BEnE),(A.11)

JI(θI , t) = AInI − D

2
BI

∂

∂θI
(BInI), (A.12)

respectively. In the limit of NX → ∞, IX(t) in equation
2.3 follows the following differential equation,

˙IX(t) = − 1
κX

(
IX(t)− 1

2
JX(t)

)
, (A.13)

where JX(t) ≡ JX(π, t) is the probability flux at θX = π.
By integrating the Fokker-Planck equations A.1 and

A.2 and the differential equation A.13 simultaneously,
the dynamics of the network that is governed by equa-
tions 2.1 and 2.2 can be analyzed.

B Numerical Integration of the

Fokker-Planck Equations

In this section, we provide a method on the numerical
integration of the Fokker-Planck equations A.1 and A.2.
Because the normalized number densities given by equa-
tions A.9 and A.10 are 2π-periodic functions of θE and
θI , respectively, they can be expanded as

nE(θE , t) =
1
2π

+
∞∑

k=1

(aE
k (t) cos(kθE) + b

E
k (t) sin(kθE)),

(B.1)

nI(θI , t) =
1
2π

+
∞∑

k=1

(aI
k(t) cos(kθI) + b

I
k(t) sin(kθI)),

(B.2)

and, by substituting them, equations A.1 and A.2 are
transformed into a set of ordinary differential equations
of aX

k and bXk as follows:

da
(X)
k

dt
= −(rX + ĨX + 1)

k

τX
b
(X)
k

−(rX + ĨX − 1)
k

2τX
(b(X)

k−1 + b
(X)
k+1)

− Dk
8τ2

X

f(a(X)
k )

+
πggapk

4τX
(−b1g1(b(X)

k ) + a1g2(a
(X)
k ))δXI ,

(B.3)

db
(X)
k

dt
= (rX + ĨX + 1)

k

τX
a
(X)
k

+(rX + ĨX − 1)
k

2τX
(a(X)

k−1 + a
(X)
k+1)

− Dk
8τ2

X

f(b(X)
k )

+
πggapk

4τX
(b1g1(a

(X)
k ) + a1g2(b

(X)
k ))δXI ,

(B.4)
f(xk) = (k − 1)xk−2 + 2(2k − 1)xk−1 + 6kxk

+2(2k + 1)xk+1 + (k + 1)xk+2, (B.5)
g1(xk) = xk−2 + 2xk−1 + 2xk + 2xk+1 + xk+2,(B.6)
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g2(xk) = xk−2 + 2xk−1 − 2xk+1 − xk+2, (B.7)
ĨX ≡ gXEIE − gXIII , (B.8)

a
(X)
0 ≡ 1

π
, (B.9)

b
(X)
0 ≡ 0, (B.10)

a
(X)
−n ≡ a(X)

n , (B.11)

b
(X)
−n ≡ −b(X)

n , (B.12)

where X = E or I. Using a vector x =
(IE , II , aE

1 , b
E
1 , a

I
1, b

I
1, a

E
2 , b

E
2 , a

I
2, b

I
2, · · ·)t, the ordinary

differential equations ẋ = f(x) are defined by A.13,
B.3, and B.4. By integrating this ordinary differential
equations numerically, the time series of the probability
fluxes JE and JI are obtained. For numerical calcula-
tions, each Fourier series is truncated at the first 40 or
60 terms.
The bifurcation sets of the Hopf bifurcation and the

saddle-node bifurcation in Figure 1 were obtained as fol-
lows. A stationary solution xs was numerically obtained
by the Newton method (Press, Flannery, Teukolsky, &
Vetterling, 1988), and the eigenvalues of the Jacobian
matrix Df(xs) that had been numerically obtained by
using the QR algorithm (Press, Flannery, Teukolsky, &
Vetterling, 1988), were examined to find the bifurcation
sets. On the other hand, the bifurcation sets of the
homoclinic bifurcation were obtained by observing the
long-time behaviors of the solutions of ẋ = f(x).

C Derivation of the Mean Fre-
quency of the Assembly

In this section, we provide a method on the numerical
calculation of the mean frequency fall of the assembly in
the network with a finite number of neurons. As shown
in Figures 4A, 4C, 5A, and 5C, JX(t) (X = E or I) of
the finite network is noisy. To eliminate noise, we use
the the low-pass filter written by

ẋout = −1
τ
xout +

1
τ
xin, (C.1)

where xin and xout are the input and the output of this
filter, respectively, and its cutoff frequency is defined by

fc =
1

2πτ
. (C.2)

The cutoff frequency fc is set at the maximal fre-
quency where the peak of the power-spectrum is ob-
served, namely, fc = 0.1 for gext = 3.9 and D = 0.006 in
Figure 6A, and fc = 0.06 for gext = 4.4 and D = 0.0045
in Figure 6B. After applying this low-pass filter to JX(t)
twice, we count the number of peaks of JX(t). JX(t∗)
at t = t∗ is considered as a peak when two conditions
JX(t∗) > JX(t∗ ± ∆t) and JX(t∗) > 〈JX(t)〉 are sat-
isfied, where ∆t is the time step of data, and 〈JX(t)〉
is the time-average of JX(t). The second condition was

required to avoid spurious peaks caused by noise. After
counting the peaks, we define the mean frequency fall of
the assembly as the number of peaks of JX(t) per unit
time.
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Buzsáki, G. (2006). Rhythms of the brain, (Oxford
University Press, New York).

Buzsáki, G., Horváth, Z., Urioste, R., Hetke, J., &
Wise, K. (1992). High-frequency network oscillation in
the hippocampus. Science, 256, 1025–1027.

Csicsvari, J., Hirase, H., Czurko, A., & Buzsáki, G.
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